应 用 文 章

气相色谱

作者 A. Tipler PerkinElmer, Inc. Shelton, CT 06484 USA

利用PerkinElmer的 Swafer 技术测定 汽油中C₂-C₅的 烃类物质

简介

石油或其它气体中的轻烃类化合物通常使用 填充柱和机械切换阀,例如ASTM的D-2597方 法。气体样品阀通过一个小的定量管将定量的 气体注入一根非极性填充柱,C1-C5的烃类物 质从该柱中脱附后进入第二根极性固定相的填 充柱,在该时刻,切换阀以使载气反向通过预

柱,反吹使得柱中残留的样品进入检测器,从而测定样品中C6+的总量,其间,C1-C5在 第二根色谱柱上得到分离,并进行定性、定量分析。整个分析过程需要20min,由于色谱 柱的多种可变因素,获得可接受分离度的色谱图往往具有极大的挑战。

本应用文献在等温条件下利用Swafer反吹技术及毛细管色谱柱建立了一个全新的分析方法,不仅增加了色谱分离度且缩短了分析样品的循环时间,仅需短短5min。

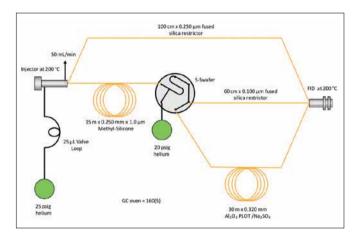
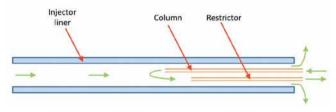
试验

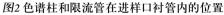
在该应用文献中,使用了一个不同于以往机械阀的S-Swafer来控制前一根色谱柱的反吹操作。S-Swafer使用Dean['] s压力平衡技术来反置通过气相色谱柱的气体压力,从而开始反 吹程序。该系统已经被广泛应用了50年,尤其对于低热质量、惰性和死体积为关键因素的 毛细管色谱柱。

在压力平衡系统中,反吹色谱柱的流出物通常返回到 进样口,由分流阀放空。在该应用文献中,我们需要 使反吹色谱柱的流出物直接进入检测器,从而能够定 量测定C6+物质的总含量。

另外,还需要确定一个双柱反冲系统的反吹点,在该 时刻点最后一个C5的峰确好从第一根色谱柱中流出, 并进入第二根色谱柱。

为使上述需求得到解决,S-Swafer的配置如图1所示。


图1 S-Swafer的配制使得建立反冲点和第一根色谱柱的流出物直接进入检测器

在该体系中,虽然仅有一个检测器,但是由于第一根 色谱柱的流出物、第一根色谱柱的反吹流出物和分析 色谱柱的流出物按顺序经过检测器,因此所有化合物 均可被监测。

图1研究表明,两根石英毛细柱(一根毛细管柱和一 个气体限流管)必须连接至进样口,三根石英毛细柱 (一根毛细管柱和两个气体限流管)必须连接至检测 器。在这两种情况下,均使用石墨垫作为连接,两根 管子插入石墨垫的中间孔,然后拧紧螺母使石墨垫挤 进两管之间。这种连接技术可获得很好的密封效果。

另外一个关键点是色谱柱和石英限流管在进样口衬管 中的定位,因为第一根柱反吹流出物将再次进入衬 管,然而流出通过气体限流管进入检测器。两根管插 入衬管的长度设置非常重要,见图2所示。气体限流管 插入衬管比色谱柱短5mm,色谱柱插入衬管至螺母头 的长度为40mm。当反吹色谱柱时,载气流过衬管将携 带反吹的流出物进入气体限流管。如果两管在衬管中的 位置不正确,反吹的流出物将无法进入气体限流管。

在表1所示的分析条件下,一种石油标准气体分析色谱 图见图3所示,标准气体的具体组成见表3所示。

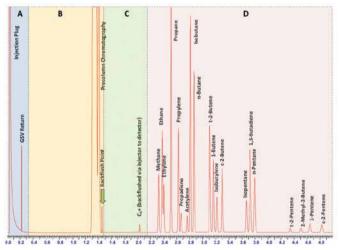


图3炼油厂气体混合标准品的色谱图

表1分析条件			
气相色谱仪	PerkinElmer Clarus® 680		
炉温	160℃保持5min		
气体进样阀	回转阀配有25µL采样环, 气体驱动装置, 阀		
	与在线供给进样口的载气相连,采样环预		
	先采用3mL/min速率充入气体样品。气体驱		
	动装置运行的时间为: 0.01min进样。阀在		
	0.02min回到初始位置。		
进样口	分流/不分流或者程序升温分流/不分流 (PSS),		
	200°C,分流50mL/min		
检测器	FID 200 ° C		
	空气450mL/min,氢气45mL/minRange x1,		
	Attenuation x64, Time Constant 50 ms		

表1分析条件	
第一根色谱柱	15 m x 0.25 mm x 1.0 µm Elite [™] -1
分析柱	30 m x 0.32 mm Al2O3 PLOT
进样口限流器	熔融石英毛细柱100 cm x 0.250 mm
中间点限流器	熔融石英毛细柱60 cm x 0.250 mm
载气	氦气
载气程序	进样口: 25psil.44min, 然后10psi根据时间事
	件,直至运行结束
	中间点: 20psi1.43min, 然后24psi根据时间事
	件,直至运行结束(见文中)
	分流速率50mL/min1.80min, 然后10mL/min
	直至运行结束

表1所示的载气程序需要做进一步的解释,当进样口压 力降低,S-Swafer的压力增加,这时开始反吹第一根色 谱柱。这种组合以保证时间事件开始运行后很快开始反 吹。稍晚降低分流流速是因为进样口内部压力消失需要 时间,由于压力的降低比分流流速的减少慢很多,因此 时间事件被延迟。

为清楚起见,图3的色谱图被分成了A-D四个区间。

为准备进样, 气体进样阀的定量环中充满了气体样品的 蒸汽, 并且使压力与大气压平衡。GSV开始运行, 一定 体积的样品蒸汽转移至分流/不分流进样口。一部分样品 进入第一根色谱柱, 大部分样品被分流阀放空。一些蒸 汽进入连接检测器的石英毛细柱, 此时检测器检测到的 色谱图见图3的A部分。12s后, GSV回到其原来的位置, 检测信号产生一个小的尖峰。

这时第一根色谱柱的样品被连接着Swafer和检测器的石 英毛细柱送入检测器,结果见图3的B部分。

一旦最后C5色谱峰流出,Swafer的压力增加,降低进样口的压力,开始反吹第一根色谱柱,反吹的C6+化合物见图3的C部分。

C1-C5化合物的进入分析柱(直接连接至检测器)与第一 根色谱柱的反吹物质进入石英毛细柱同时发生,但是由 于C1-C5的烃类化合物在分析柱上被完全保留,直至反吹 的物质色谱峰结束,C1-C5的烃类化合物的色谱峰未开始 从分析柱中流出,见图3的D部分。 该方法使得单检测器可以监测四种信号,彼此之间无干扰,整个分析过程在短短5min内完成。每个样品分析完成后,需要0.4min使得系统压力重新平衡,以便第二个样品进样,因此整个分析的循环时间仅为5.4min。

图4是图3色谱图中被分析物质色谱图的放大。

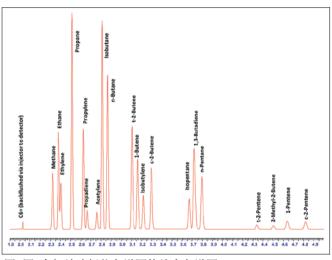


图4图3中相关分析物色谱图的放大色谱图

同一石油气体样品重复100进样,原始数据的采集时间 见表2所示,所有的运行时间仅花费了9小时2分钟。

表2运行100次的样品序列开始采集数据和结束的时间					
le Name	Time	Date			
GA_std_001.raw	18:59	1/5/2011			
GA_std_002.raw	19:05	1/5/2011			
GA_std_003.raw	19:10	1/5/2011			
"	"	"			
GA_std_098.raw	03:46	1/6/2011			
GA_std_099.raw	03:52	1/6/2011			
GA_std_100.raw	03:57	1/6/2011			

对这些数据进行处理,以建立该方法的定量精度。100 次运行数据峰面积的相对标准偏差见表3所示。

表3运行100次Arnel炼油厂气体混合标准气体的峰面积 精密度(Lot 102-06-04137, Cylinder# 10196D)

Component	Mol Fraction (%)	Mean Peak Area (µV.s)	Peak Area Relative Standard Deviation (%)
n-Hexane (C ₆ +)	0.1001	397	0.72
Methane	5.0112	6227	0.21
Ethylene	2.0025	9358	0.21
Ethane	4.0021	4569	0.27
Propane	6.0185	19897	0.20
Propylene	3.0038	9905	0.24
Propadiene	0.9970	2206	0.44
Acetylene	0.9992	1815	3.35
Isobutane	5.0000	20169	0.21
n-Butane	3.9993	15807	0.20
t-2-Butene	3.0061	11662	0.30
1-Butene	1.9998	8022	0.29
Isobutylene	1.0025	3667	0.39
c-2-Butene	1.9996	7583	0.35
Isopentane	1.0009	4016	1.19
1,3-Butadiene	3.0107	11745	0.32
n-Pentane	2.0002	7426	0.26
t-2-Pentene	0.1996	736	0.76
2-Methyl-2-Butene	0.1998	681	1.10
1-Pentene	0.4007	1556	0.59
c-2-Pentene	0.4001	1448	0.75

大多数情况下,精密度明显小于0.5%,对于在短短5min 内将化合物在两根柱中切换、控制压力和流速的系统而 言这是非常好的结果。

该系统可被用于分析石油样品,图5列举了一个液化石油 气实际样品的例子。

PerkinElmer, Inc. 珀金埃尔默仪器(上海)有限公司 地址:上海张江高科园区李冰路67弄4号 邮编: 201203 电话: 800 820 5046 或 021-38769510 传真: 021-50791316 www.perkinelmer.com.cn

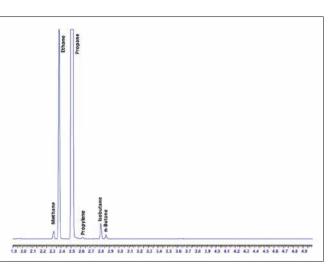


图5液体石油气体的色谱图

结论

本应由文献基于PerkinElmer[®] Swafer技术建立了压力平 衡反吹毛细管色谱柱系统,该系统可用于分析石油及 其它气体样品中C1-C5烃类化合物。

该方法的新颖性在于,第一根色谱柱反吹的流出物可 直接被检测器定量测定其中含有6个或更多碳原子总烃 类化合物含量。

该体系描述了监控样品进样程序,及运行一次进样, 使用一个检测器监测第一根色谱柱的色谱、第一根色 谱柱反吹的流出物及C1-C5烃类化合物的色谱。

色谱发生在等温条件下,无需炉温冷却,重复分析样 品的循环时间仅5.4min。

定量分析精密度非常好,大多数化合物的相对标准偏差小于0.5%。

要获取全球办事处的完整列表,请访问http://www.perkinelmer.com.cn/AboutUs/ContactUs/ContactUs

版权所有 ©2012, PerkinElmer, Inc. 保留所有权利。PerkinElmer[®] 是PerkinElmer, Inc. 的注册商标。其它所有商标均为其各自持有者或所有者的财产。